
Chapter 16
Networks and AI: Outline

Valeria Bodishtianu, Yanli Lin, Oliver Kiss, Girish Bahal

16.1 Introduction

• Why networks matter in economics and econometrics (social interactions, inform-
ation, trade/production, finance, systemic risk, etc).

• Distinguishing network econometrics from spatial econometrics (link to Ch. 7).
• Roadmap: evolution from spatial models → social interactions → network econo-

metrics → AI/ML on graphs; from fixed networks, to strategic link formation, to
learned representations (embeddings/GNNs).

• Scope and objectives of the chapter.

Part I: Foundations

We start from early matrix-based spatial tools and show how network economists
generalised them to observed social/economic networks, and then extended to
formation and causal designs under spillovers.
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16.2 Spatial Models and Social Interactions (1970s–1990s)

Topics:
• SAR/SEM, spatial weights matrices, distance-based dependence and applications.
• Manski (1993): reflection problem, linear-in-means social interaction models.
• Early quasi-network applications.
Lessons:
• Aged well: introduction of the weights-matrix framework, later generalized to

networks.
• Aged not-so well: over-reliance on makeshift “neighbour” definitions (often

unvalidated proxies for economic/social interaction), often treating geography as
the main channel instead of the social/economic links.

• Results were often fragile; Manski’s reflection problem put identification consider-
ations at the core of future model developments, which ultimately shaped modern
network econometrics.

16.3 The Emergence of Network Econometrics (1990s–2000s)

Topics:
• What economists mean by “networks”: nodes, links, adjacency matrices; undirected

vs directed, weighted vs unweighted; contrast with spatial weights.
• Peer-effects models on observed networks.
• IV/GMM/QMLE for network autoregression.
• First systematic use of real network data (school friendship networks, firm and

interbank linkages, trade networks).
Lessons:
• Aged well: attaching explicit network structure improved interpretability (who

affects whom and through which connections) and helped with identification
clarity; extending spatial tools to arbitrary graphs expanded the applications of
workhorse models.

• Aged not-so well: early models treated networks as fixed; links in many economics
problems are often endogenous and mismeasured.

• Assuming the observed network as given in regressions was a natural first step;
however, selection/formation issues became central to modeling after the initial
stages.

16.4 Modelling Network Formation

Topics:
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• Descriptive network metrics as econometric inputs (degree, centrality, clustering).
• Statistical models of network formation: dyadic regression, ERGMs, homophily

and triadic closure.
• Tension in 2000s/2010s: move toward micro-founded / tractable statistical forma-

tion models.
• Game-theoretic and strategic models of network formation; equilibrium concepts

and identification.
• Estimation techniques: pseudo-likelihood, method of moments, simulation-based

estimation; computational challenges.

Lessons:

• Aged well: strategic models of network formation; modelling that explains why
links form (preferences, economic constraints, policy interventions).

• Aged not-so well: highly parametrized ERGMs get computationally fragile and
hard to diagnose.

• Micro-founded and interpretable formation models are a crucial part of modern
networks econometrics development; link endogeneity matters for inference.

16.5 Interference, Experiments, and Causal Effects

Topics:

• Interference and violations of SUTVA on networks.
• Experimental and quasi-experimental designs on networks: cluster randomisation,

saturation designs, graph partitioning.
• Exposure mappings, direct and spillover effects.
• Randomisation inference and variance under network dependence.

Lessons:

• Aged well: design-based approaches (explicit treatment assignment and exposure
definitions).

• Aged not-so well: old practice of implicit assumptions of no interference on
networks; spillovers are central to the estimation.

• Direct vs spillover effects delineation and careful design structuring become
central under network dependence.

Part II: Big-Data and AI Era

We next turn to the big-data shift: as networks become larger and more richly
measured, high-dimensionality issues and computational constraints come to the
forefront; ML methods enter the toolkits for network studies.
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16.6 Network Econometrics in the Big-Data Era

Topics:

• New data sources: administrative registers, online platforms, financial networks.
• High dimensional networks (many nodes, many attributes) and the curse of

dimensionality; sparsity methods.
• Embeddings and node representations for econometrics.
• Evolving networks, state-dependent links.
• Network dependence at scale: sparse vs dense graphs shape what “large-n” means;

naı̈ve i.i.d. inference and off-the-shelf clustering can fail, motivating graph-robust
inference, scalable estimators, and dependence-aware validation.

Lessons:

• Aged well: regularization/scalable estimation; many classical approaches become
unfeasible at the modern data scale; dynamic methods.

• Aged not-so well: naı̈ve use and interpretation of embeddings.
• Rich new network data expanded the set of feasible economics problems, but

moved constraints to significant computational issues; successful approaches
combine scalable algorithms with economic transparency.

16.7 AI & Machine Learning for Network Data

Topics:

• Probabilistic Graphical Models and Network Dependence.

◦ Economic applications: credit risk, contagion, macro-financial linkages.

• Deep Learning and Graph Neural Networks.

◦ Representation learning on graphs; message-passing neural networks and
GNNs.

◦ Conceptual bridge: GNNs as a nonlinear successor to SAR/spatial lag models.
◦ Economic applications: link prediction, recommendation systems and matching

platforms, fraud detection.

• Causal Machine Learning under Network Interference: adapting causal ML to
settings with interference and spillovers.

• LLM-constructed Economic Networks.

◦ Text-based economic networks: supply chains, citation and knowledge graphs.
◦ Accompanying issues: measurement error, bias and validation problems.

Lessons:
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• Aged well: scalable algorithms, computational advances; graph-based ML used
for scalable approximation of network-structured dependence and for capturing
nonlinearities that traditional linear spillover models miss.

• Aged not-so well: black-box predictions, limited interpretability, lack of economic
microfoundation; good-fit models do not imply causal or policy-relevant con-
clusions; pitfalls include edge-based train/test leakage and non-stationarity as
platforms or network rules evolve.

• Validation issues are a bottleneck; credibility of AI on networks requires careful
sensitivity analysis to network measurement/formation and ideally is formed
around economic structure.

Part III: Economics & Interpretation

We close by showing how methodological developments affect the economics-of-
networks research areas; what we can learn about welfare, diffusion, and systemic
risk once econometrics handles formation and spillovers.

16.8 Connections to the Economics of Networks

Topics:

• Econometrics of Networks and AI applications to key economics-of-networks
themes:

◦ Welfare and efficiency of network structures;
◦ Inequality;
◦ Diffusion of information, technology, norms;
◦ Contagion issues and systemic risk in financial and production networks.

• Case studies (social networks / firm supply chains / financial networks).
• Policy hook: optimal intervention/targeting on networks, illustrating where econo-

metrics + AI can change decisions rather than only improve prediction.

16.9 General Lessons

• Aged well: clear identification, linear-in-means, strategic formation, network
experiments.

• At risk: complex ERGMs without diagnostics, uninterpretable black-box ML.
• Principles of surviving relevance: clarity + causal structure + scalability, plus

measurement/validation as a first-class object.
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16.10 Looking Ahead

• Privacy-preserving networks, dynamic networks, high-frequency data.
• Hybrid methods bridging econometrics ↔ GNNs ↔ generative models.
• Outlook for next decade.

16.11 Conclusions
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